Analysis of spectral approximations using prolate spheroidal wave functions

نویسنده

  • Li-Lian Wang
چکیده

In this paper, the approximation properties of the prolate spheroidal wave functions of order zero (PSWFs) are studied, and a set of optimal error estimates are derived for the PSWF approximation of non-periodic functions in Sobolev spaces. These results serve as an indispensable tool for the analysis of PSWF spectral methods. A PSWF spectral-Galerkin method is proposed and analyzed for elliptic-type equations. Illustrative numerical results consistent with the theoretical analysis are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs

We examine the merits of using prolate spheroidal wave functions (PSWFs) as basis functions when solving hyperbolic PDEs using pseudospectral methods. The relevant approximation theory is reviewed and some new approximation results in Sobolev spaces are established. An optimal choice of the band-limit parameter for PSWFs is derived for single-mode functions. Our conclusion is that one might gai...

متن کامل

Approximations in Sobolev spaces by prolate spheroidal wave functions

Recently, there is a growing interest in the spectral approximation by the Prolate Spheroidal Wave Functions (PSWFs) ψn,c, c > 0. This is due to the promising new contributions of these functions in various classical as well as emerging applications from Signal Processing, Geophysics, Numerical Analysis, etc. The PSWFs form a basis with remarkable properties not only for the space of band-limit...

متن کامل

Approximations and Fast Algorithms

The key element in the design of fast algorithms in numerical analysis and signal processing is the selection of an eÆcient approximation for the functions and operators involved. In this talk we will consider approximations using wavelet and multiwavelet bases as well as a new type of approximation for bandlimited functions using exponentials obtained via Generalized Gaussian quadratures. Anal...

متن کامل

Prolate Spheroidal Wave Functions In q-Fourier Analysis

In this paper we introduce a new version of the Prolate spheroidal wave function using standard methods of q-calculus and we formulate some of its properties. As application we give a q-sampling theorem which extrapolates functions defined on qn and 0 < q < 1.

متن کامل

A Prolate-Element Method for Nonlinear PDEs on the Sphere

A p-type spectral-element method using prolate spheroidal wave functions (PSWFs) as basis functions, termed as the prolate-element method, is developed for solving partial differential equations (PDEs) on the sphere. The gridding on the sphere is based on a projection of the prolate-Gauss-Lobatto points by using the cube-sphere transform, which is free of singularity and leads to quasi-uniform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010